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Abstract

This paper is concerned with the spatial acoustic response of the human pinna modelled with the boundary element

method (BEM). Accurate geometric models of five pinnae are captured by using state-of-the-art 3-D laser scanners and

digitisers. These computer models are converted to valid BEM models and analysed acoustically up to 20 kHz. Using

baffled pinnae models, we first repeat and validate numerically the normal concha modes as measured in the classical

experiments made by E.A.G. Shaw in the 1970s. We then study the spatial mode shapes of a baffled cylinder (as a

simplified model of the concha) and accurate pinnae by applying the singular value decomposition (SVD) technique. The

method is used to analyse at discrete frequencies a matrix of Green functions relating the acoustic pressure at ‘field’ points

and ‘source’ points in space. We demonstrate how the singular vectors which appear as spatial mode shapes couple to the

singular vectors of the sound field. The relationship between these basis functions found with the SVD and the normal

concha mode shapes is demonstrated. The method is also used in producing ‘reduced order’ transfer functions by taking

into account only the most dominant features of the singular vectors for the cases of a baffled cylinder and accurate baffled

pinnae.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The localisation of sound sources by humans can be accomplished by the use of acoustical cues only. The
head-related transfer functions (HRTFs) represent the linear, directional transformations of sound signals in
free-field, detected in the eardrum of a listener or an artificial head. These functions have a complex structure,
especially at frequencies above 5 kHz, with contributions being from the head, torso, and especially the
external ear (outer ear). It has been shown by Kahana [1] that numerical modelling can be used to simulate the
HRTFs and sound fields around the human head. The results, obtained with the boundary element method
(BEM), were validated with high accuracy against measurements [2,3], and therefore it is possible to
investigate further the acoustical characteristics of the human pinna with simulation tools rather than
measurements.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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The pinna acts as a complex acoustical antenna and codes spatial characteristics of the sound field into
temporal and spectral attributes. In defining the acoustical features of the human pinna in relation to
localisation cues, two schools of thought have emerged in the last 30 years. It was initially suggested by
Batteau [4] that the pinna acts as a ‘time domain’ filter. It is more commonly recognised now that the pinna
acts as a ‘frequency domain’ filter following the significant work presented by Shaw [5–9]. We adopt the latter
approach in our study (an extensive literature survey can be found in Ref. [10]).

The largest hollow in the pinna, the concha, is a broad shallow cavity with substantial radiation damping. It
is partially divided by the crus helias. The lower part, the cavum, is tightly coupled to the canal whereas the
upper part, the cymba, is connected to the fossa of helix (Fig. 1, Shaw [9]). It was found [11] that these parts
have acoustical attributes, whereas the structures extending from the concha, such as the helix, anti-helix and
lobule seem to function collectively as a flange.

Although the response of the pinna is very complex at high frequencies and it is very sensitive to the
geometric shapes, size and orientation, it is hypothesised that common physical features exist, and these
appear in the form of acoustic modes, which can be used in modelling the pinna-related transfer function
(PRTF) or the HRTF. Shaw [6,9] identified six different modes of the human concha. His patterns ([9, p. 38],
also shown in Fig. 2) were the average among ten subjects. Although the excitation angle, the magnitude at the
base of the concha and the resonance frequencies varied between individuals, his identification of monopole,
‘horizontal’ and ‘vertical’ dipole patterns provides a very important insight into understanding the physics of
the external ear. These common features have not been used by Shaw in the construction of individualised
response, but they were used in the construction of an average pinna. To the best of the author’s knowledge his
work has not been validated or continued, except for the support offered by the work of Middlebrooks [12],
who observed a change in the directional response at 8 and 12 kHz, suggesting correlation with the change of
pinna modes from ‘vertical’ dipoles to ‘horizontal’ dipoles.

In the last two decades, various computer simulation techniques have been suggested to model the
modification of sound impinging on the human head or parts of the external ear. Weinrich [13] was the first to
attempt modelling the response around an ‘accurate’ geometry of the head. He used analytical and numerical
techniques in analysing the response of various parts of the head. He suggested a very simple geometric model
Fig. 1. The external ear. On the left, the different parts of the pinna and on the right a schematic cross section with the ear canal and

eardrum. After Shaw [9].
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Fig. 2. Average characteristics of six modes under blocked meatus conditions based on data for ten subjects. Numbers indicate relative

values of sound pressure, on a linear scale, measured at base of the concha. Signs (7) indicate relative phase (01/1801). Broken and dotted

lines show positions of nodal surfaces. Arrow indicates most favourable source direction. Data at left show mode number, mode

frequency, most favourable source angle, and mode response. Mode 1 has uniform pressure across base of concha and is approximately

omnidirectional. (After Shaw [7,9]).
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of the pinna with a mesh of only 20 elements resembling the shape of the concha. His solution was based on a
finite difference approximation method, and the results approximated only roughly the dependence of the first
notch with elevation. Recently, Katz [14,15] acquired individualised HRTFs using the BEM. Although the
idea was similar to the work of Weinrich, the use of BEM models converted from accurate laser-scanned
models suggested that although the BEM is associated with ‘low-frequency’ modelling, we can now solve tens
of thousands of simultaneous equations, in order to predict the response of complex shapes such as the human
head. Owing to limited computing power, his work was restricted to frequencies below 5 kHz; as a result, his
simulations could not be validated in the high-frequency range where pinna resonance and anti-resonance
affect the pressure variations.

In this paper, we focus on accurate acoustic modelling of the external ear with the emphasis on acoustic
modes (the PRTFs and HRTFs are discussed in Refs. [2,3]), where first we attempt to repeat Shaw’s
experiment by computer simulation, and later we derive a mathematical formulation that can extract the
modal characteristics of an individual pinna into its frequency response. The foundations of the formulation
used in this paper were presented in Refs. [16,17]). In these papers, the authors investigated the relationship
between the basis functions of classical acoustics and the singular value decomposition (SVD) through the
scattering from a rigid sphere where the response of a sphere was derived using an infinite series of complex
spherical harmonics. This formulation was used in the construction of a Green function matrix relating a
number of field points in the far field (on a large sphere) and a number of sources on the surface (of a small
sphere). In Ref1. [17], the authors described the relationship between the ‘mode shapes’ and the spherical
harmonics, and discussed the effect of non-uniform sampling of either the radiating surface or the far field.
This influences the interpretation of the SVD when using arbitrary, complex, radiating or scattering shapes
such as human pinnae that are investigated in this paper.

We hypothesise that at a specific ‘resonance’ frequency, the dominant singular value s1 will have
significantly higher amplitude than the others, and the complex singular vectors associated with this singular
value will have distinctive patterns. We compare these patterns, and their resonance frequencies with the
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results of Shaw’s study of the normal modes. We also show how the baffled pinna frequency response can be
reconstructed using only a few of the dominant singular values.

2. Boundary element method and mesh models

2.1. BEM formulation

2.1.1. Direct boundary integral equation

The numerical simulations below were undertaken using the SYSNOISE software package [18] which uses
the BEM in order to compute numerically the solution of the homogeneous Helmholtz equation. This Direct
BEM is given by

pðrÞ ¼

Z
s

½pðr0Þ
qgðrjr0Þ

qn
� gðrjr0Þ

qpðr0Þ

qn
�dSðr0Þ, (1)

which is Kirchhoff–Helmholtz integral equation. SYSNOISE first solves the integral equation for the surface
pressure pðr0Þ. More details are given in Refs. [18,19].

2.1.2. Indirect boundary integral equation

The DBEM can be used only when the boundary surface S is closed, thus the sound field can be calculated
either inside or outside the boundary surface. For cases where the domain is open, or includes both closed and

open boundary surfaces, the indirect boundary element method (IBEM) is used (see Ref. [20]).

pðrÞ ¼

Z
s

mðr0Þ
qgðrjr0Þ

qn
� sðr0Þgðrjr0Þ

� �
dSðr0Þ ðr 2 V Þ, (2)

where mðr0Þ ¼ pþðr0Þ � p�ðr0Þ is generally called the jump of pressure or the double layer potential. It represents
a distribution of dipole sources on the surface, and sðr0Þ ¼ ððqpþðr0ÞÞ=qnÞ � ððqp�ðr0ÞÞ=qnÞ is generally called
the jump of normal derivative of pressure or single layer potential, and it represents a distribution of monopole

sources on the surface. The term gðrjr0Þ represents the free space Green function relating the pressure at r to
the source strength at r0.

2.1.3. Acoustic transparency in the IBEM

The following formulation of the IBEM is a special case of the integral equation. Its main use is in problems
where the transmissibility of sound by vibro-acoustic interactions can be analysed on both sides of an infinite
baffle.

The pressure can be analysed as a superposition of the contribution by the single and double layer potentials
on the three parts of S: Sl, the part of S in V�, Sm, the part of S in the infinite plane, and Sr, the part of S in Vþ

(see Fig. 3).
It is shown in detail by Coyette et al. [21], that the total pressure is given by

pðrÞ ¼

Z
Sm

þ
qp�ðr0Þ

qn
gðrjr0Þ

� �
dSðr0Þ þ

Z
Sl

mðr0Þ
qgðrjr0Þ

qn
� sðr0Þgðrjr0Þ

� �
dSðr0Þ

þ

Z
T

�
qpðr0Þ

qn
gðrjr0Þ

� �
dSðr0Þ ðr 2 V�Þ ð3Þ

and

pðrÞ ¼

Z
Sm

�
qpþðr0Þ

qn
gðrjr0Þ

� �
dSðr0Þ þ

Z
Sr

mðr0Þ
qgðrjr0Þ

qn
� sðr0Þgðrjr0Þ

� �
dSðr0Þ

þ

Z
T

�
qpðr0Þ

qn
gðrjr0Þ

� �
dSðr0Þ ðr 2 VþÞ, ð4Þ

where the integrals over T refer to the elements depicted in Fig. 3.
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Fig. 3. Acoustic transparency: a sound wave can propagate from both sides of the baffle (V� and V+) through ‘transparent’ elements

(at points T) defined at z ¼ 0. Sm denotes the points on the infinite baffle, and Sr and Sl the points on surface of the body attached to

the baffle, on the positive and negative sides of the baffle, respectively.

Y. Kahana, P.A. Nelson / Journal of Sound and Vibration 292 (2006) 148–178152
2.2. Acquiring the computer models

The initial assumption made during this work was that the highest resolution possible is required for the
mesh models of the pinnae. There are currently a few techniques available to obtain a computer model by
scanning a physical model. These include computed tomography (CT), magnetic resonance imaging (MRI),
3-D ultrasonic imaging, etc. These are generally used for internal scanning for medical purposes. The main
advantage of the 3-D laser scanner technique used in this research is that it can produce fairly quickly an
accurate mesh of the surface made out of triangles.1 The Cyberware ‘Mini model’ 3-D laser scanner is based
on the high-resolution 3030RGB/HIREZ scan head with a mid-size high-resolution motion system. With this
scanner, even the ear canal geometry can be obtained.

2.3. Mesh decimation

The original scan produced a polygonal mesh (see Ref. [22] for details) that describes the surface geometry
of the pinna. Since the CPU time of the BEM increases drastically with the number of nodes, it is crucial to
optimise the size of the mesh. It is well known that the maximum frequency in the BEM corresponds to the
longest edge in the mesh. Any alteration to this global limit will distort the overall results. Therefore, a
homogeneous distribution of the nodes and elements is required.

The main algorithm used in this research has been developed by Johnson and Hebert [23] where its main
advantage is in successfully handling the two forces in mesh decimation: preserving the shape by limiting a
defined maximum ‘global shape error’ and distributing the vertices homogeneously by local operators. This
algorithm and more mesh manipulation techniques required in this study are described in detail in Ref. [1].

2.4. Pinnae mesh models

A few pinnae were scanned and investigated. Four pinnae of KEMAR [24] (the right pinnae: DB-60, DB-65,
DB-90 and DB-95), B&K [25], CORTEX [26,27], and YK (the first author’s moulded model). Since DB-95
1Note that in principle, the use of quadrilateral elements can produce a higher accuracy of the simulation compared with triangular

elements, but due to the format of the original data, quarilateral elements were not used for scanned models.
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does not represent a typical human ear, it was found that the resulting response was not representative of a
typical ear, and it was decided not to include it in the following analysis of the results. Also, the DB-902 was
used only in the study of normal concha modes.

The original models included approximately 150,000 triangles and 75,000 vertices, and included three-
dimensional information of the pinna (including its frame and base). The final BEM mesh models used in this
study were composed of, on average, 7400 triangles and 3800 vertices (also termed ‘elements’ and ‘nodes’,
respectively, in the context of BEM).

3. Normal mode extraction of baffled pinna models

3.1. The original experimental apparatus and procedure

In this section, we extract with numerical modelling the normal modes of the pinna, following a similar
experimental procedure as was used by Shaw [6,7] using the coordinate system which is illustrated in Fig. 4.
Shaw attached a plate to the head, so that diffraction around the head was minimised. A progressive wave
source was rotated in the grazing incidence plane ð0�pyo360�;f ¼ 0�Þ and the pressure was measured with a
probe microphone at the blocked meatus position. The variation of pressure under these conditions resembles
the response under free-field conditions for median plane sources. A mode was found when maxima appeared
as the frequency and source positions were moved. Then the pressure amplitude and phase were recorded at
the base of the concha and the fossa of helix as well as the angle at which the mode was most excited.

3.2. Numerical modelling

In order to model an infinite baffle, all pinnae boundaries are aligned to a specific plane ðz ¼ 0Þ. The mesh
models that were used had a maximum distance of 3.7mm (on average) from one vertex (node) to another
which corresponded to a maximum frequency of �15 kHz assuming six elements per wavelength and �23 kHz
when assuming four elements per wavelength. Two types of models were investigated. The first, shown in
Fig. 5(a), is characterised with gradual smooth alignment of the boundaries of the pinna to the baffle plane.
The algorithms used to manipulate the model did not change any of the geometrical dimensions of the pinna
itself. This model also includes a refined area around the blocked meatus position for using the principle of
reciprocity (see below). The second model, shown in Fig. 5(b), is optimised to give the minimal number of
elements and nodes due to the complexity of the calculation used in Section 5.

In the numerical modelling of this experiment, the small baffle Shaw attached to his subjects around their
pinnae is replaced here by an infinite baffle. His ‘wave progressive source’ is replaced here first3 by an ideal
monopole source that is placed 1mm away from the blocked meatus. Using the principle of reciprocity, this is
used to calculate the pressure variations 1m away (Shaw was limited to the near field only with a distance of
8 cm from the microphone, due to the size of the baffle and calibration of the transducers). With the
reciprocity simulation technique, the calculation of the pressure at field points in the post-process stage is
straightforward and fast. However, we limited these points to be on a circle with a radius of 1m at grazing
incidence. The calculation is undertaken at a resolution of 11, and the frequency step was 200Hz from 1 to
20 kHz. It is assumed that if the pressure at the blocked meatus position is predicted accurately, other points
on the surface of the pinna should have a similar accuracy. These are obtained immediately due to the inter-
connectivity of the BEM equation where all pressure values on the surface are solved for simultaneously.

It should be noted that a common problem associated with exterior problems solved with the DBEM is that
the solution breaks down at certain characteristic frequencies. As demonstrated by Schenck [28], these
frequencies are the eigenfrequencies of the corresponding interior problem with modified boundary
conditions. These frequencies appear purely for mathematical and not physical reasons. In total, 30 over-
determination points were used in our modelling cases to alleviate this problem.
2Note that DB-90 and DB-95 have larger ear canal openings. Their geometry is mainly suited for the use of earmoulds.
3This to find the maxima of pressure variation in the far field. Later a plane wave source was used to excite the pinna, to eliminate

spherical attenuation.
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Fig. 5. (a) DB-65 BEMmesh with 5199 nodes and 10216 elements. The boundaries are smoothed gradually to the baffle plane z ¼ 0. Note

the mesh refinement at the base of the concha which is used when the reciprocity method is used and a source is positioned at the entrance

to the blocked meatus. This model is optimised for normal modes simulation in baffled conditions. (b) Original shape with frame

boundaries aligned with baffle plane, z ¼ 0. Optimised for minimal size for SVD calculations (3389 nodes with 6656 elements).
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Fig. 4. Coordinate system for the simulation of the transfer function and modes of baffled pinnae.
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3.3. Results

Fig. 6 presents the linear amplitude variations of peaks and notches as detected at the blocked meatus of
DB-65 (this is a larger pinna than the original DB-60 of KEMAR, suggested by Maxwell and Burkhard, [29])
using the mesh model shown in Fig. 5(a). The amplitude colour bar values range from 0 to 4.7 times the source
strength of a monopole source at 1m. The map shows the frequency in the x-axis and the angle of excitation at
grazing angles in the y-axis. The calculation is undertaken using the reciprocity technique where a monopole
source was positioned 1mm away from the blocked meatus location.

It can be observed that six resonance frequencies appear as follows: at 4.2, 7.2, 9.5, 11.6, 14.8, and at
18.0 kHz. The exact angle, at which the excitation is at maximum, was found by plotting a directivity/vector
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Fig. 6. The normalised response of DB-65 baffled pinnae in grazing incidence at a resolution of 11 and steps of 200Hz. The linear values

for each angle of source were obtained by dividing the response at the entrance to the blocked ear canal with the response at the same

location on the baffle but without the pinna. Value of ‘‘1’’ means that the pinna does not contribute to pressure variations, whereas values

below and higher than ‘‘1’’ mean attenuation and amplification, respectively.
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plot, at each resonance frequency. In the left plots in Fig. 7, the length of the arrows facing the centre of the
pinna corresponds to the magnitude of the pressure at the blocked meatus due to a source at that location.
Also the colour of the arrow changes with the magnitude: red for maximum response and blue for minimum
response. The colours assigned to each vertex on the pinna mesh (the right-hand pictures) correspond to the
absolute pressure, and negative values indicate negative phase at the particular vertex (compared to the phase
at the blocked entrance to the ear canal). Note that a more accurate way of presenting these results would be
with two plots; either of the real and imaginary values of the pressure, or the magnitude and phase, but we use
this format for consistency with Shaw’s plots.

The first resonance appears in Fig. 7(a) at 4.2 kHz. The directivity plot is almost omnidirectional, i.e. the
pinna is excited almost with the same efficiency from every direction in grazing incidence. The pressure
variation at the base of the concha is also almost uniform with amplification factor of 4.5 compared with the
response detected at the centre of the baffle (which doubles the pressure, compared to free-field equalisation).

The next two ‘vertical’ modes, in Fig. 7(b) and in Fig. 7(c) are excited the most effectively from the angles of
y ¼ 60� and 94�, respectively, and these are within the range measured by Shaw. Also note the nodal line
appears in the vicinity of the crus helias.

The next three modes (Figs. 7(d)–(f)) are clearly ‘horizontal’ with all excitation having maxima at the front
(y ¼ 0�; 4�;�16�, respectively). Also in this case, the angle variations are in agreement with Shaw’s results.
Also the nodal lines and phase changes have similar patterns to his measurements.

This procedure was repeated for five additional pinnae, and the resonance frequencies are summarised in
Table 1. Note that not all six modes are identified with each pinna. This will be discussed in Section 6.

4. Spatial basis functions and the singular value decomposition

The SVD method is a commonly used mathematical tool in the analysis of sound radiation and scattering
(for example, where the SVD is used in the context of ‘mode shapes’, see Refs. [30–33]). In the following
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Fig. 7. The modes of the DB-65 modes with a similar format presented in Fig. 2. The figures correspond to the following frequencies:

(a) 4.2 kHz, (b) 7.2 kHz, (c) 9.5 kHz, (d) 11.6 kHz, (e) 14.8 kHz, (f) 18 kHz.
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section, we concentrate on the problem of sound radiation (or scattering) from arbitrary, complex shapes. A
detailed description of the theory below is given in Ref. [1] and in Refs. [13,17].

4.1. The singular value decomposition (SVD) method

A matrix Gðrjr̂Þ of Green functions is defined by relating the pressure p produced at a number of field points
specified by the positions r to a number of point (monopole) sources specified at positions r̂ with source
strengths q. Thus the pressure can be expressed as

pðrÞ ¼ Gðrjr̂Þqðr̂Þ. (5)
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Fig. 7. (Continued)
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The SVD method enables any complex matrix with dimensions K � L to be expressed as

Gðrjr̂Þ ¼ U
X

VH, (6)

where
P

is the K � L matrix whose elements are zero except the diagonal elements si. The superscript H
denotes conjugate transpose. Note that the singular values are always arranged in a descending order and the
rank R of Gðrjr̂Þ can be smaller than the size of K or L such that

s1Xs2X � � � sR40; sRþ1 ¼ � � � ¼ sp ¼ 0 p ¼ min ðK ;LÞ. (7)

The matrices U and V are square matrices with the dimension K � K and L� L, respectively, and are
orthogonal such that

UHU ¼ UUH ¼ I; VHV ¼ VVH ¼ I. (8)
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Fig. 7. (Continued)
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The columns ui of the matrix U and the columns vi of the matrix V, respectively, define the left and right
singular vectors of Gðrjr̂Þ. These singular vectors can be interpreted as ‘mode shapes’ since they provide sets of
orthogonal basis functions for describing the spatial variation in radiated pressure and their relationship to
spatial variations in source strength. Specifically, it follows from Eqs. (1) and (2) that

pðrÞ ¼ U
X

VHqðr̂Þ (9)

and since U�1 ¼ UH, this expression can be rearranged as

UHpðrÞ ¼
X

VHqðr̂Þ. (10)

It follows that we may write for all ipP; ðP ¼ min ðK ;LÞÞ

uHi pðrÞ ¼ siv
H
i qðr̂Þ. (11)
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Table 1

Resonance frequencies in kHz of six pinnae modelled with the BEM. The frequency corresponds to the frequency at which the maximum

amplification is reached in the resonance frequency range. The results of Shaw [9] show the average of 10 pinnae

DB-60 DB-65 DB-90 YK CORTEX B&K Shaw

4.9 4.2 4.2 4.1 4.2 4.1 4.2

7.8 7.2 7.2 7.6 7.2 7.7 7.1

10.3 9.5 9.6 — 9.6 10.5 9.6

— 11.6 11.8 11.2 11.8 12.2 12.2

14.0 14.8 14.7 14.0 14.1 15.3 14.4

17.0 18 18.4 17.8 17.4 18.0 16.7
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This expression demonstrates that at a certain frequency a spatial pattern in the radiated field defined by
uHi pðrÞ is linearly related to a specific spatial pattern of source strength distribution defined by vHi qðr̂Þ. These
two patterns are related by the singular value si.

Note that it is possible using the SVD formulation to reconstruct the frequency response from a source in a
particular position pn and a field point in another position qm. Based on Eq. (6), the vector p can be given by
the product

p1

p2

..

.

pn

..

.

pN

2
66666666666664

3
77777777777775

¼

u11 u21 � � � un1 � � � uN1

u12 u22 � � � un2 � � � uN2

..

. ..
. . .

. ..
. ..

. ..
.

u1n u2n � � � unn � � � uNn

..

. ..
. ..

. . .
. ..

.

u1N u2n � � � unN � � � uNN

2
66666666666664

3
77777777777775

s1

s2

. .
.

sn

. .
.

sN

2
66666666666664

3
77777777777775

�

v�11 v�12 � � � v�1n � � � v�1N

v�21 v�22 � � � v�2n � � � v�2N

..

. ..
. . .

. ..
. ..

. ..
.

v�m1 v�m2 � � � v�mn � � � v�mN

..

. ..
. ..

. ..
. ..

. ..
.

v�M1 v�M2 � � � v�Mn � � � v�MN

2
66666666666664

3
77777777777775

q1

q2

..

.

qm

..

.

qM

2
66666666666664

3
77777777777775

. ð12Þ

For the case of an excitation due to a specific source, we assume only qm is non-zero, then

p1

p2

..

.

pn

..

.

pN

2
666666666664

3
777777777775

¼

u11 u21 � � � un1 � � � uN1

u12 u22 � � � un2 � � � uN2

..

. ..
. . .

. ..
. ..

. ..
.

u1n u2n � � � unn � � � uNn

..

. ..
. ..

. . .
. ..

.

u1N u2n � � � unN � � � uNN

2
66666666664

3
77777777775

s1v�1mqm

s2v�2mqm

..

.

snv�nmqm

..

.

sNv�Nmqm

2
666666666664

3
777777777775

(13)
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or in a compact form

pn ¼
XN

n¼1

snunnv�nmqm. (14)

Thus, the summation can be limited to a number which is less than N, if the last terms of the series of sn are
much smaller than the first terms.
5. Spatial basis functions of baffled pinna models using the singular value decomposition

5.1. The cylinder in an infinite baffle

5.1.1. The singular values

The cylinder, as a basic model of the concha was investigated by Shaw and Teranishi [5] in their early work.
Since the first resonance of a blocked meatus pinna corresponds to a quarter wavelength ‘depth’ mode, it is
possible to match the volume of a cylinder to produce the desired resonance frequency as well as controlling
the amplification at its base. In this case, we use a cylinder model where its entire top section is defined as
transparent (see Fig. 8(a)). A model with similar dimensions was investigated by Teranishi and Shaw [11] who
showed that the first resonance frequency around 4.5 kHz is determined by the volume of the cylinder. The
response is substantially independent of the angle of incidence up to about 7 kHz but becomes strongly
dependent on the angle of excitation at the first transverse mode at approximately 11 kHz (see Teranishi and
Shaw, Fig. 2(b), [11]). As before, the calculation was undertaken using the ‘IBEM transparency’ formulation.

Clearly, the characteristics of the singular values depend on the geometry of the radiating body as well as the
source positions defined in the Green function matrix. By defining the field points not only at the bottom of
the cylinder but also on the cylinder walls and on a small area on the baffle, the properties of the singular
values can be investigated where some parts of the ‘radiating’ body have different resonance frequencies.
Therefore, the field point mesh (see Fig. 8(b)) was used to calculate the pressure values and includes 336 nodes
and 457 elements. The sources were positioned for each run at one of the 121 positions defined on the upper
hemisphere, composed of 108 elements.4

Fig. 9 presents the variation of the singular values with frequency. It can be noticed that two ‘resonance’
frequencies (the frequencies at which the curves of the singular values reach a peak) are characterised by
strong peaks. These do not need to coincide with resonance frequencies of a particular transfer function (for
example: at the base of the baffled cylinder due a source at an arbitrary location), but they have similar
characteristics since these main peaks have distinctive frequencies and amplitudes (see an example in Section
5.1.3).

The first mode, at 4.2 kHz is known to be associated with a quarter wavelength depth resonance, with a
peak in s1 only. The second mode appearing at 10.8 kHz is a transverse mode, with peaks in both s1 and s2. It
is interesting to observe the connectivity and intersection between the curves, as the SVD automatically
positions s1 before s2 (see Fig. 9, and Eq. (7)). It was found that when a sampled mesh of source points having
an insufficient resolution was used, the same resonance frequency appeared, but the curves were not
intersecting each other, as we shall see in the case of modelling of accurate representation of pinnae (Section
5.2). Following the curve of s1 (a ‘monopole’ mode), its radiation efficiency is predominant up to 4.2 kHz, and
gradually decreasing with increasing frequencies. The curves of s2 and s3 (‘dipole’ modes) start with a similar
singular value at 2 kHz and increase with frequency up to 10.8 kHz, and then have decreasing amplitude. As
frequency increases, the contribution of lower-order singular values is increasing, such that at 12 kHz s10 is
almost 50% of s1. Another important conclusion that arises from this graph is that certain modes can be
associated with more than a single singular value s.
4It is estimated that much lower density meshes could have been sufficient, and the high resolution was used to investigate the effect on

the intersection of the curves of the singular values as a function of frequency.
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Fig. 9. The singular values of the numerically generated 336� 121 Green function matrix relating points on the cylinder and its

surrounding to points on the hemisphere with radius of 1m. The simulation is undertaken at 51 frequencies. , s1, , s2, , s3. The
next seven largest singular values are shown unlabelled.

Fig. 8. The IBEM transparency mesh model: (a) A mesh cylinder with a volume of 3.8 cm3 to represent the concha is composed of 376

linear elements and 190 nodes. Its top is aligned with the infinite baffle ðz ¼ 0Þ, where all top elements are transparent so waves can

propagate through both sides of the baffle. (b) 457 elements and 336 nodes of field points are located both on the walls of the cylinder and

the baffle.
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5.1.2. The patterns of the singular vectors

In Fig. 10(a) the ‘mode shapes’ associated with s1 at 4.2 kHz are presented.5 The non-dimensional basis
function has a uniform distribution in the base of the cylinder (where the scale has only positive values), which
is related to a uniform distribution in the far field (and the scale has only negative values). Note that the sign of
the real (or imaginary) values depends on the relative distance between the baffled cylinder surface and the
5Although the basis functions are complex, only the real values are presented here to demonstrate the principle.
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Fig. 10. The figures on the left show colour maps of the real part of the left singular vectors of the numerically generated 336� 121 Green

function matrix. The figures on the right show the real part of the right singular vectors in the far field: (a) 4.2 kHz—s1, (b) 4.2 kHz—s2,
(c) 10.8 kHz—s1, (d) 10.8 kHz—s2.
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hemi-sphere far-field points. In Fig. 10(b) the ‘mode shapes’ associated with s2 at 4.2 kHz are presented. Both
‘mode shapes’ on the cylinder and on the hemisphere show a ‘dipole-like’ variation. Since at this particular
frequency s2 does not contribute significantly in the Green function matrix (as illustrated in Fig. 9), no
particular variation is noticed in the cylinder base. It is hypothesised that a resonance mode will produce
varying values of basis functions on the surface mesh with little variation at other positions on the baffle. Figs.
10(c) and (d) illustrate the ‘mode shapes’ associated with s1 and s2, respectively, at 10.8 kHz. This transverse
mode results in two basis functions, which are out of phase. Note that for both singular values the variation of



ARTICLE IN PRESS
Y. Kahana, P.A. Nelson / Journal of Sound and Vibration 292 (2006) 148–178 163
the singular vectors on the baffle are small compared with the variation on the base of the cylinder, and also
that the scales of the singular vectors associated with s1 and s2 are different.
5.1.3. Extraction of the frequency response

Based on Eq. (14) we can reconstruct a single frequency response from an arbitrary position in the far field
(in this case at a distance of 1m, at x ¼ �0:53m, y ¼ �0:26m, and z ¼ �0:8m). We can first obtain directly
an exact response by positioning a monopole source at the above position and solve for the pressure at the
desired position at the base of the cylinder (in this case at x ¼ 0:005m, y ¼ 0:003m, and z ¼ �0:01m) with
the ‘IBEM transparency’. As a second stage, we can verify that the same response is obtained, this time with
the SVD method and the singular vectors and singular values are used with all of their terms, and finally, the
number of terms in the summation (Eq. (14)) is reduced to only the first few terms. Fig. 11 presents the
frequency response between these points. It is concluded that if the first five basis functions are used, the error
is less than 0.5 dB up to 12 kHz, and if only the first three basis functions are used, the same accuracy is
obtained, but the maximum frequency is reduced to 8 kHz. Note that a significant error occurs from around
8.5 kHz if only three terms are used. It can be seen in Fig. 9 that at this frequency s4 intersects with s1 and its
value increases, so although s4 does not have as strong a peak as the first three highest singular values, it is still
important in the reconstruction of the frequency response (its value is around 50% of s2 and s3 which is
clearly not negligible).

Nevertheless, this solution demonstrates that it might be possible to describe a frequency response at any
given position in space, based on only few basis functions if these have strong peaks at certain frequencies
which are significantly higher than the remaining singular values. This will ensure at least an approximate
reconstruction of the peaks but not the notches, as will be discussed in Section 5.4 and presented in Fig. 22.
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Fig. 11. Reconstruction of the frequency response detected at the bottom of the cylinder (x ¼ 0.005m, y ¼ 0.003m, and z ¼ �0.01m) due

to a source, arbitrarily chosen at x ¼ �0.53m, y ¼ �0.26m, and z ¼ �0.8m, based on the basis functions found on the surface of the

cylinder mesh and in the far field. , exact solution, , 20 terms, , 10 terms, , 5 terms, , 3 terms.
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5.2. An accurate model of a pinna (KEMAR DB-65) in an infinite baffle

The principles used in the previous sections are implemented now with a baffled accurate pinna model (DB-
65). Since the computational cost of operating the SVD procedure at many frequencies is very expensive, an
optimised mesh model which includes 3389 nodes and 6656 elements, and has a blocked meatus has been used
(see Fig. 5(b)). For this size of problem, the exterior DBEM formulation was the most efficient.

5.2.1. The singular values and vectors of the DB-65

The SVD method is used in this case in a very similar procedure to that used with the cylinder, with the
distribution of source positions on the upper hemisphere. We investigate the characteristics of the singular
values and the singular vectors. The dimensions of the matrix of Green functions relating a number of points
on the surface of the DB-65 pinna mounted on an infinite baffle and a number of points on a far-field
hemispherical surface are now 3389� 209. The procedure is repeated 91 times for frequencies between 2 and
20 kHz in steps of 200Hz, so overall around 64 million complex pressure values have been calculated.

The frequency dependence of the resulting singular values is illustrated in Fig. 12. This plot highlights the
behaviour of the first dominant singular value and also shows the frequency dependence of the next nine
largest singular values. The most significant feature of these results is that the dominant singular value has
peaks appearing at certain frequencies. It has been found that the corresponding left and right singular vectors
also reveal distinctive spatial patterns at these tuned frequencies.

In addition, note that the curves do not intersect (as in the case of the baffled cylinder, Fig. 9), although the
trend of ‘flipping’ modes can be seen. For example, the curve of s1 reaches its maximum at 4.0 kHz and its
value is declining up to 6 kHz, and then continues (albeit with a gap) with the second curve. s2 changes from
the second curve to the first curve at the same frequency (6 kHz). It is not clear whether the curves do not
intersect due to the low sampling of the source positions in space or rather the asymmetric shape of the pinna.
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Fig. 12. The singular values of the numerically generated 3389� 209 Green function matrix relating 3389 points on the surface of the

blocked meatus of DB-65 pinna mounted on a rigid baffle to 209 points distributed approximately uniformly on the upper hemisphere.

The calculation is undertaken at 91 frequencies.
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Fig. 13. The real parts of the left and right singular vectors associated with the dominant singular values of the numerically generated

3389� 209 Green function matrix for the DB-65 pinna: (a) s1 at 4.0 kHz, (b) s1 at 6.8 kHz, (c) s1 at 9.5 kHz, (d) s2 at 9.5 kHz, (e) s1 at
12.5 kHz, (f) s1 at 16.2 kHz.
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Fig. 13. (Continued)
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Although the curves shown in Fig. 9 stopped intersecting when the simulation was undertaken with only 32
field points (instead of 121 field points used in Fig. 9) and the cylinder, it cannot be concluded at this stage that
increasing the number of field points will result in intersecting curves for the case of an arbitrary shape such as
the pinna. Increasing the number of field points was beyond the computing power capability.

The main ‘resonance’ frequencies associated with s1 are 4.0, 6.8, 9.5, 12.5, 16.2, and 18.2 kHz. It is difficult
though to specify if peaks occur at ‘resonance’ frequencies that are associated with s2, s3, etc. due to acoustical
behaviour or due to a low sampling resolution of the hemisphere. For example, it is not clear whether s2 at
9.5 kHz has a broad resonance peak due to similar physical behaviour as appears in the case of the baffled
cylinder in this frequency range (see the curve of s2 at 10.8 kHz in Fig. 9), or because of a break that appears in
the ‘flipping’ curves of s1 and s2.

Fig. 13 shows the real parts of the left and right singular vectors at discrete frequencies, found as peaks (s1
or s2) in Fig. 12. It is clear that there is some resemblance between the ‘modes’ on the surface of the pinna, and
the ‘modes’ appearing at source positions. However, the interpretation of the shapes, especially at source
positions becomes more complex as frequency increases. In addition, the interpretation requires the
visualisation of the real and imaginary values of both singular vectors.

It is also evident that at frequencies of which the singular values reach a peak, a tuned mode appears on the
surface of the pinna. The variation of the non-dimensional basis function in the surrounding of the pinna is
close to zero, and the maximum and minimum values appear mainly in the cavum concha and cymba concha,
and also in the fossa of helix and antihelix.

Fig. 13(a) shows the real parts of the left and right singular vectors associated with the first dominant
singular value (s1) appearing in Fig. 12 at 4.0 kHz. This singular vector illustrates the first quarter wavelength
depth resonance. The concha has a ‘monopole’ mode, with a similar pattern appearing in the far field. Similar
patterns appear on the pinna surface with the imaginary parts of the left and right singular vectors (these are
not presented here but can be found in Ref. [1]).
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Fig. 14. The singular values of the numerically generated 3906� 209 Green function matrix relating 3906 points on the surface of the

blocked meatus of B&K pinna mounted on a rigid baffle to 209 points distributed approximately uniformly on the upper hemisphere. The

calculation is undertaken at 91 frequencies.
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Fig. 13(b) shows the real parts of the left and right singular vectors associated with the first dominant
singular value (s1) appearing in Fig. 12 at 6.8 kHz. The ‘vertical’ dipole patterns identified in these vectors
involve oscillatory flow between the cavum concha, cymba concha and the antihelix. In addition, the patterns
on the pinna are comparable with the first ‘vertical’ mode identified by Shaw at 7.1 kHz.

The third pair of real singular vectors associated with the first singular value that has a peak at 9.5 kHz is
presented in Fig. 13(c). In this case, another ‘vertical’ mode is noticed on the surface of the pinna and involves
oscillatory flow between the cavum concha, cymba concha and the antihelix, as before but with different signs
in the cymba concha and the antihelix. The variation in the far field is more difficult to analyse visually.

Fig. 13(d) presents the only singular vectors associated with s2. It is probable that these vectors are related
to the first transverse mode appearing in the case of the baffled cylinder (see Figs. 10(c) and (d)). Although the
plots have a clear ‘vertical dipole’ in the far field and ‘horizontal dipole’ patterns on the surface of the pinna
with oscillatory flow between the fossa of helix and the antihelix, the cavum and cymba concha patterns
remain unchanged.

The patterns become more complex in Figs. 13(e) and (f), but the patterns on the surface of the pinna are in
general agreement with the results of the horizontal modes found by Shaw. In both figures the interpretation
of the modes in the far field is not possible, and it is not clear if increasing the resolution of source positions in
space will change the patterns or if these are a result of the high variation of efficient excitation of the pinna at
high frequencies.
5.3. The singular values and vectors of additional pinnae

In the following section the B&K, DB-60, CORTEX and YK pinnae are investigated, and the Green
function matrix relating the points on each pinna and 209 source positions on the upper hemisphere. The
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Fig. 15. The singular values of the numerically generated 2825� 209 Green function matrix relating 2825 points on the surface of the

blocked meatus of the DB-60 KEMAR pinna mounted on a rigid baffle to 209 points distributed approximately uniformly on the upper

hemisphere. The calculation is undertaken at 91 frequencies.
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results are presented in Figs. 14–17. As in the previous case, the ‘resonance’ frequencies are found by the peaks
of the first singular value. The amplitudes vary among pinnae for each centre of ‘resonance’ frequency.

Table 2 summarises the centre ‘resonance frequencies’ of all of the pinnae investigated. For the DB-65 and
DB-60 pinnae, column (a) is related to excitation with 209 sources and (b) for excitation of 36 sources in
grazing incidence. In general, similar frequencies appear when compared with the averages given by Shaw,
especially for the first three modes. As frequency increases, variations in pinnae shapes and size as well as low
density of source positions in the Green function matrix make the comparison less clear.

In Figs. 18–21, the real and imaginary singular vectors of various pinnae are presented. These are calculated
at frequencies at which a maximum peak is obtained in the singular values of the Green function matrix
relating the points on the pinna and the points in the far field.

For the first ‘resonance’ frequency, i.e. the quarter wavelength resonance, the first singular vector is
presented. In this case, the ‘mode shapes’ of five pinnae change only with respect to the phase. The real and
imaginary values of the left singular vectors seem to have a similar pattern (although with different magnitude
levels).

The real and imaginary parts of the right singular values are not identical and clearly more sensitive, i.e. the
modes are excited slightly at different locations for each pinna.

As frequency increases, the second mode shown still has many common features among the pinnae
investigated. The patterns of the real and imaginary left singular vectors show the ‘vertical dipole’ pattern.
Also, ‘dipole’ patterns appear in the real and imaginary right singular vectors, but with slight distortions.

Lower order singular values at this frequency are not presented because these do not show significant
radiation patterns. For the next, third peak, three pinnae are shown with similar patterns on their surface, but
with large variations on the hemisphere. Similar behaviour is noticed also for the fourth peak. It is believed the
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Fig. 16. The singular values of the numerically generated 3390� 209 Green function matrix relating 3390 points on the surface of the

CORTEX pinna mounted on a rigid baffle to 209 points distributed approximately uniformly on a far-field hemisphere of radius 3m. The

calculation is undertaken at 66 frequencies.
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Fig. 17. The singular values of the numerically generated 3392� 209 Green function matrix relating 3392 points on the surface of the

blocked meatus of YK pinna mounted on a rigid baffle to 209 points distributed approximately uniformly on the upper hemisphere. The

calculation is undertaken at 91 frequencies.

Table 2

‘Resonance’ frequencies (in kHz) of pinnae obtained with the SVD. In each case the Green function matrix is based on 209 sources

approximately distributed in the upper hemisphere, except the case of DB-65 (b) and DB-60(b) pinnae, where 36 sources were distributed

uniformly in grazing incidence (every 101). Note the similarities of the resonance frequencies and the average values given by Shaw [9] and

summarised in Table 1

DB-65 DB-60 B&K CORTEX YK pinna

a b a b

4.0 4.0 4.6 4.5 4.0 4.0 3.9

6.8 7.2 8.8 7.8 7.4 6.8 7.6

9.5 9.5 10.3 10.3 10.3 9.8 10.8

12.5 12.0 — — 12.2 12.7 —

16.2 15.2 13.8 13.8 15.4 14.6 14.0

18.2 17.8 17.5 17.3 18.9 — 18.6
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relatively low resolution of the hemisphere is not sufficient to extract correctly all ‘mode shapes’ as frequency
increases.

5.4. Frequency response reconstruction of an accurate pinna

The procedure, based on Eq. (14) was investigated before, for the case of the baffled cylinder (Fig. 11). In
this case the blocked meatus model of DB-60 was used and two source positions are investigated and
presented. Fig. 22 presents the efficiency and accuracies of ‘reduced order’ frequency responses using only
3–10 terms. It is concluded that the reconstruction produces different accuracies depending on the source
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Fig. 18. The left and right singular vectors associated the first singular value, s1 at the first peak, around 4 kHz. On the left, the real part,

and on the right, the imaginary part.
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positions. In both cases, the reconstruction of peaks is better than notches mainly since the peaks in the
singular values are dominant. Whenever the first singular value reaches a minimum value, the relative
contribution of the low order singular values increases and more terms are required in the summation. When
the source is position at f ¼ 0�; y ¼ 90� (on the baffle, above the pinna, Fig. 22(a)) the curve is complex and
three terms are sufficient for accurate reconstruction only up to 7 kHz. Above this frequency the number of
terms should be between five and ten. Similar responses are obtained when the source is below
(f ¼ 0�; y ¼ 270�, Fig. 22(b)).
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Fig. 19. The left and right singular vectors associated the first singular value, s1 at the second peak, around 7 kHz. On the left, the real

part, and on the right, the imaginary part.
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6. Discussion

6.1. The number of normal modes in an individual pinna

Table 1 summarises the resonance frequencies in which normal modes were found using the BEM and also
the average data summarised by Shaw [9]. As the simulations were validated with high accuracy with
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Fig. 20. Caption as before, with s1, at the third peak around 10 kHz.
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measurement [1–3] it is interesting to observe that at least five resonance frequencies were found in each pinna
and not exactly six as concluded by Shaw. The missing resonance was found at different frequencies. By
analysing Shaw’s measurement for individuals [9, pp. 34–35], it can be seen, for example, that the averaged
12.1 kHz resonance frequency has distinct behaviour with Shaw’s subjects J and H, and a very small change in
the curvature of the curve around this frequency with subjects A, B and G. Also, the averaged 14.4 kHz
resonance frequency is absent in subject H.

In this paper, we presented in detail the result obtained with the DB-65, which has the dimensions of an
average male pinna. In this case, the results are in high agreement with the results of Shaw, including exact
variations of amplitude and phase on the surface of the concha, fossa of helix and antihelix. However, in both
simulation and measurements of the DB-60 the 12 kHz mode reported by Shaw (and mentioned also by
Middlebrooks [12]) could not be observed. This can be explained either by the fact that certain pinnae have
weak resonance at a given high frequency, and also probably by the fact that small pinnae have higher
resonance frequencies that are shifted beyond 20 kHz.

6.2. The singular values of the SVD when using complex shapes

The numerical results of a baffled cylinder demonstrate that the singular vectors are frequency dependent
and at particular resonance frequencies these ‘modes’ radiate more efficiently than at other frequencies.
Distinctive spatial patterns that are associated with these singular values appear both on the surface of the
body as well as in the far field. It was shown, for example that the transverse mode of the cylinder is composed
of two dipole modes linked to s1 and s2 (and these were also observed in the case of the accurate pinna case).

Owing to a limited number of source positions used in the SVD, it is difficult to analyse the behaviour of
lower-order singular values and their singular vectors (e.g. Figs. 12 and 15). This was due to computing and
hardware limitations.



ARTICLE IN PRESS

Fig. 21. Caption as before, with s1, at the forth peak around 12–14 kHz.
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6.3. Similarities between the normal modes and the singular vectors

Table 1 summarises the normal modes resonance frequencies. Table 2 summarises the singular vectors when
excitation is undertaken at grazing incidence angles (for DB-60 and DB-65 only) and the upper hemisphere for
all pinnae.

High agreement with the previously measured acoustical characteristics is detected in the case of DB-65(b)
and DB-60(b). As the excitation from far-field points is similar to the normal mode excitation the resonance
frequencies and the patterns are very similar.

For example, Shaw [9] (Fig. 2/mode 1) presented the ‘‘unidirectional’’ resonance of the concha at a
frequency which, on average, is about 4.2 kHz. We first visualise this mode in the BEM simulation of normal
modes in Fig. 7(a). We then present the singular vectors of five pinnae on both the surface of the pinna and in
far-field points using the SVD method in Fig. 13(a), and present results of five pinnae in Fig. 18. In these cases,
the associated basis function evaluated on the surrounding far-field hemisphere, there would appear to be at
least some directionality associated with this response.

The next two ‘vertical’ dipole-like resonances presented by Shaw [9] (Fig. 2/modes 2 and 3) suggest that
there are strong frequencies, on average, about 7.1 and 9.6 kHz, respectively. These are indeed exhibited
clearly by the results shown in Fig. 7(b) and (c).

The singular vectors on the surface of the pinna, show similar vertical behaviour as presented in Figs. 13(b)
and (c). These characteristics are also presented when a few pinnae are investigated and compared: in Fig. 19,
the resonance frequencies vary from 6.8 to 8.8 kHz (with an average of 7.1 kHz stated by Shaw), and in Fig. 20
the second ‘vertical’ mode resonance frequencies vary from 9.5 to 10.8 kHz (with an average of 9.6 kHz by
Shaw). However, in these cases, the dipole-like motion appears to involve not only the concha but a
combination of the concha and the antihelix. The corresponding far-field basis functions also show a
predominant directivity in the vertical direction.
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Fig. 22. Reconstruction of the frequency response detected at the blocked ear canal of baffled DB-60. The curves show comparisons of the

response obtained with direct calculation (using the DBEM) and with the SVD with limited number of terms in the series. The source is

positioned at grazing incidence (a) above ðf ¼ 0�; y ¼ 90�Þ (b) below ðf ¼ 0�; y ¼ 270�Þ. , exact solution, ,10 terms, , 5 terms,

, 3 terms.
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It is interesting to observe a ‘horizontal’ dipole-like resonance which appears at s2 (see Fig. 13(d)). This is
very similar to the transverse mode detected in the case of the baffled cylinder (Fig. 10(c, d)). However, this
mode occurs between the helix and fossa of helix and does not affect the concha.

The horizontal modes detected by Shaw, appearing at higher frequencies, have more complex shapes. We
demonstrate the next quadrupole-like mode shape of three pinnae at 12–14 kHz (Fig. 21) compared with an
average of 12.1 kHz observed by Shaw. It should be noted that one would not expect to get exactly the same
‘resonance frequencies’ as those found by Shaw since his resonance frequencies were found by exciting the
pinna only at grazing incidence and with a ‘near field’ spherical source. Our spatial basis functions are based
on excitations from the upper hemisphere, and near field effects are eliminated.

6.4. Pinna modes and the pinna related transfer function (PRTF)

In the study of pinna modes, it would be desirable to ‘convert’ the spatial description of pressure variation
in the pinna firstly into an individualised PRTF and ultimately into an HRTF. The search for the general and
the individual acoustic properties of the human pinna has generated a significant number of publications [10].
However, the properties are usually observed from the HRTF curves (generally in the frequency domain).
Then, HRTFs are modelled or simplified using common rules, which can be classified in two groups: physical
models (e.g. [34,35]) and mathematical models (e.g. [36]). Most models are currently concentrated on finding a
mathematical ‘best fit’ to empirical HRTF data. These do not attempt to produce an individualised HRTF,
but to represent the original data in a more compact form.

Using the SVD method, it does seem possible to build a ‘‘reduced order model’’ of an individualised baffled
pinna frequency response (PRTF) by using only a relatively small number of the dominant singular values and
their associated basis functions. The performance is at its best in the reconstruction of peaks rather than
notches, since the first singular value of the resonance frequency contributes the most. At minima, many low
order singular values make a contribution of the same order. The use of the SVD technique in reconstructing
baffled pinnae frequency responses still needs further investigation for its use in a full HRTF database.

The authors studied the acoustic properties of PRTFs (as well as of HRTFs) in Refs. [2,3]. Similar pinnae
models were used in modelling the transfer functions in various planes: for grazing incidence, in the lateral
vertical plane and in the horizontal plane. There is a clear similarity between the resonance sound in the two
mode types discussed in this study and the peaks found in the PRTF. This suggests that the foundations of
mode shape extraction proposed in this paper can be used for PRTF and HRTF conversion based on
geometric data of an individualised pinna.

7. Conclusions

The modes of the human pinna have been simulated with the BEM using two approaches: by simulating the
procedure used with the classical measurements carried out by Shaw, and also by using the SVD formulation
relating the Green function matrix of field and source points. In the first case, we found mainly similarities
(classification of modes into groups, centre of resonance frequency and angle of excitation) but also deviations
from his results, mainly as in some cases only five modes were detected instead of six.

Since the BEM can provide the accurate pressure values at any points on an arbitrary body, we
hypothesised that by using the SVD method we can observe certain common characteristics that appear at the
resonance frequencies. When the mathematical formulation was implemented numerically on pinnae, spatial
patterns of both ‘source mode shapes’ and ‘field mode shapes’ revealed the resonance frequencies that take
into account excitation from anywhere on the hemisphere. Although clear ‘monopole-, dipole-, and
quadrupole-like’ modes appear on the surface of the pinna, and similar patterns in the source points, larger
variations appear among pinnae for the latter. It is not clear if the relatively low sampling of the space
contributes to the variation, especially at high frequencies, or the high variation is derived purely from
physical reasons.

Finally, it is hypothesised that it might be possible to reconstruct the HRTFs of these shapes by taking only
the first few terms of the matrices, i.e. only the first few mode shapes are important to describe the acoustical
structure and only a few resonance frequencies will appear to be dominant to describing HRTFs.
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The study presented in this paper is part of the work on the numerical modelling of the HRTF and the
PRTF (presented in Refs. [2,3]) which is concerned only with objective acoustic modelling whereas these
models await subjective studies to determine their effectiveness in the research on spatial hearing.
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